ON NIL GENERALIZED POWER SERIESWISE ARMENDARIZ RINGS
نویسندگان
چکیده
منابع مشابه
On Nilpotent Power Series with Nilpotent Coefficients
Antoine studied conditions which are connected to the question of Amitsur of whether or not a polynomial ring over a nil ring is nil, introducing the notion of nil-Armendariz rings. Hizem extended the nil-Armendariz property for polynomial rings onto powerseries rings, say nil power-serieswise rings. In this paper, we introduce the notion of power-serieswise CN rings that is a generalization of...
متن کاملProperties of Armendariz Rings and Weak Armendariz Rings
We consider some properties of Armendariz and rigid rings. We prove that the direct product of rigid (weak rigid), weak Armendariz rings is a rigid (weak rigid), weak Armendariz ring. On the assumption that the factor ring R/I is weak Armendariz, where I is nilpotent ideal, we prove that R is a weak Armendariz ring. We also prove that every ring isomorphism preserves weak skew Armendariz struct...
متن کاملOn Classical Quotient Rings of Skew Armendariz Rings
Let R be a ring, α an automorphism, and δ an α-derivation of R. If the classical quotient ring Q of R exists, then R is weak α-skew Armendariz if and only if Q is weak α-skew Armendariz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly ci...
متن کاملOn quasi-Armendariz skew monoid rings
Let $R$ be a unitary ring with an endomorphism $σ$ and $F∪{0}$ be the free monoid generated by $U={u_1,…,u_t}$ with $0$ added, and $M$ be a factor of $F$ setting certain monomial in $U$ to $0$, enough so that, for some natural number $n$, $M^n=0$. In this paper, we give a sufficient condition for a ring $R$ such that the skew monoid ring $R*M$ is quasi-Armendariz (By Hirano a ring $R$ is called...
متن کاملOn a generalization of central Armendariz rings
In this paper, some properties of $alpha$-skew Armendariz and central Armendariz rings have been studied by variety of others. We generalize the notions to central $alpha$-skew Armendariz rings and investigate their properties. Also, we show that if $alpha(e)=e$ for each idempotent $e^{2}=e in R$ and $R$ is $alpha$-skew Armendariz, then $R$ is abelian. Moreover, if $R$ is central $alpha$-skew A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the Korean Mathematical Society
سال: 2013
ISSN: 1225-1763
DOI: 10.4134/ckms.2013.28.3.463